@ A maps complex numbers to complex numbers. For

example, the function F(2J = 2+ 2z+ 1, where zis complex, is a
complex function.

@ Acomplex IS @ mapping of the form
F(Q = a+ az+ @Z+ -+ a2
where Z &, &, ..., anare complex.
@ Acomplex IS @ mapping of the form

o+ az+ @2+ ...+ a,”
b+ bjz+ b2+ ...+ bpZ"

where &, &,...,an b, b, ..., bnand zare complex.
@ Observe that a polynomial function is a special case of a rational function.

F(Z (

@ Herein, we will mostly focus our attention on polynomial and rational
functions.
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@ Afunction Fis said to be 2 if F() is defined and
given by

F() = lim F(z(
7~ 2
@ Afunction that is continuous at every point in its domain is said to be

@ Polynomial functions are continuous everywhere.

@ Rational functions are continuous everywhere except at points where the
denominator polynomial becomes zero.
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@ Afunction Fis said to be Z= 2 ifthe limit
— i F(9-H(4
F(2) = limz. z = 22=°
exists. This limit is called the of F at the point z= Zg
@ Afunction is said to be If it is differentiable at every point in its
domain.

@ The rules for differentiating sums, products, and quotients are the same for
complex functions as for real functions. If () and G () exist, then
Q )aF) (o) = aF () forany complex constant &
Q )F+ G(a)= F(a)+ G(z(o
Q )FO ()= F(2)3 )+ F(2)G (o

Q Fl G '(a)= CXZ))F(Z)();(—;)(?)G(Z(O and

Q if = G o) and G (o) exists, then the derivative of F(G(D) at ug is
F (2) G (mo) (i.e., the chain rule.(

@ Apolynomial function is differentiable everywhere.
@ Avrational function is differentiable everywhere except at the points where its
denominator polynomial becomes zero.
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@ An In the complex plane with center 2 and radius ris the set of
complex numbers zsatisfying

z—2| < k

where 7is a strictly positive real number. A

@ plot of an open disk is shown below.

Im
/// N
/ \
/ ro 2
[ /// \
| [ =
\ o) /
\\ /
9 /
7

Re

Version: 2016-01-25



A function is said to be 2 ifitis differentiable at
o everypointinan open disk about Zg

« Afunction is said to be If it is analytic at every point in its
@ domain. Apolynomial function is analytic everywhere.

@ cArational function is analytic everywhere, except at the points where
o Its denominator polynomial becomes zero.
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@ Ifa function Fis zero at the point  (i.e., /() = 0), Fis said to have a
at Zo

@ Ifa function Fis suchthat F() = 0, FD(x)=0,..., F*D(x)=0
(where F (A denotes the Ath order derivative of F), Fis said to have an
at Zo

Apoint at which a function fails to be analytic is called a
Polynomials do not have singularities.

Rational functions can have a type of singularity called a pole.

If a function Fis such that G(2 = 1/ F(2 has an rth order zero at 2, F is
said to have an at 2o

© 6 6 ¢

@ Apole of first order is said to be , Whereas a pole of order two or
greater is said to be . Asimilar terminology can also be applied to
zeros (i.e., and (
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@ Given a rational function F, we can always express £ in factored form as

_ K(z—a)%(z—a)% --(z—au) ¥
"3 (z—b)Pi(z—bp)B2 --(z—by)Bv

where K'is complex, a1, &,...,aw, b, b, ..., by are distinct complex
numbers, and a1, 02,...,ayand B1,B2,...,Bnare strictly positive
Integers.

@ One can show that Fhas polesat by, bp, ..., byand zerosat
a,a,...,aw.

@ Furthermore, the Ath pole (i.e., b) is of order B4, and the Ath zero (i.e., &) is
of order ax.

@ When plotting zeros and poles in the complex plane, the symbols ‘0’ and
“X’are used to denote zeros and poles, respectively.
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Part 13

Partial Fraction Expansions (PFEs)

Version: 2016-01-25



@ Sometimes it is beneficial to be able to express a rational function as a
sum of /ower-orader rational functions.

@ This can be accomplished using a type of decomposition known as a
partial fraction expansion.

@ Partial fraction expansions are often useful in the calculation of inverse

Laplace transforms, inverse z transforms, and inverse CT/DT Fourier
transforms.
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@ Consider a rational function
A"+ A1V 1+ ..+ a v+ ag
B+ BpaV 1+ ...+ Biv+ Bo

@ The function Fis said to be If m< n(ie., the order of the
numerator polynomial is strictly less than the order of the denominator
polynomial.(

A =

@ Through polynomial long division, any rational function can be written as
the sum of a polynomial and a strictly-proper rational function.

@ A sirictl/y-proper rational function can be expressed as a sum of lower-
order rational functions, with such an expression being called a partial
fraction expansion.
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@ Any rational function can be expressed in the form of

amV+ am-1V"Tl+ ...+ ag

A0 = Vi+ bV 1+ .+ b

@ Furthermore, the denominator polynomial

D(V) = V'+ bp—1V" 1+ ...+ bgin the above expression for /(1) can be
factored to obtain

D(Y) = (v=p) A (v=p2) % --(v—pn)

where the pxare distinct and the gkare integers.
@ If Fhas only simple poles, @ = = ---= gh= 1

©

Suppose that Fis strictly proper (i.e., m< n(

@ In the determination of a partial fraction expansion of F, there are f1wo
casesto consider:
Q@ F has only smple poles and
@ F has at/east one repeated pole
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@ Suppose that the (rational) function ~ has only simple poles.

@ Then, the denominator polynomial D for F is of the form

() = (v—p)(v=p2) (V= pn),

where the pgare distinct.

@ In this case, F has a partial fraction expansion of the form

F( W — A + A An—l An

v—m V= V=P V— Pn

where

Ak= (V_p/()F('MV:pk-

@ Note that the (simple) pole pkcontributes a single term to the partial
fraction expansion.
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@ Suppose that the (rational) function F has at least one repeated pole. One
@ can show that, in this case, F has a partial fraction expansion of the form

A]_'L /412 Alqi
F(V = + +
N A (AL
+ 1 + + AZQ?
V=P2 )V—pQ% |
+ + A'D-I- + .t A'qu
V=Pp P
where | )I/_I17 (q,o
o=t P py w0
kI = — Pk,
By =71
(G—N( av L o
@ Note that the gith-order pole pxcontributes giterms to the partial fraction
expansion.

@ Note that A = (n)(n-1)(n-2) --+(1) and 0! = .1
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Part 14

Epilogue ‘
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ELEC 486: Multiresolution Signaland Geometry Processing

with C++

@ Ifyou did not suffer permanent emotional scarring as a result of using these
lecture slides and you happen to be a student at the University of Victoria,
you might consider taking the following course (developed by the author of
these lecture slides) as one of your technical electives (in third or fourth

year):
ELEC 486: Multiresolution Sgnal and Geometry
Processing with C++
@ Some further information about ELEC 486 can be found on the next s/ide
including the URL of the course web site.
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ELEC :486/586
Multiresolution Signal and Geometry Processing with C++

@ normally offered in Summer (May-August) term; only prerequisite

ELEC 310
@ subdivision surfaces and subdivision wavelets

@ 3D computer graphics, animation, gaming (Toy Story, Blender software)
@ geometric modelling, visualization, computer-aided design
@ multirate signal processing and wavelet systems

@ sampling rate conversion (audio processing, video transcoding)

@ signal compression (JPEG 2000, FBI fingerprint compression)

@ communication systems (transmultiplexers for CDMA, FDMA, TDMA(
C++ (classes, templates, standard library), OpenGL, GLUT, CGAL
software applications (using C(++
for more information, visit course web page:

http://www.ece.uvic.ca/~mdadams/courses/wavelets
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